Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(47): eadj3524, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992161

RESUMO

Human infants acquire language with notable ease compared to adults, but the neural basis of their remarkable brain plasticity for language remains little understood. Applying a scaling analysis of neural oscillations to address this question, we show that newborns' electrophysiological activity exhibits increased long-range temporal correlations after stimulation with speech, particularly in the prenatally heard language, indicating the early emergence of brain specialization for the native language.


Assuntos
Percepção da Fala , Lactente , Adulto , Humanos , Recém-Nascido , Percepção da Fala/fisiologia , Idioma , Encéfalo/fisiologia , Desenvolvimento da Linguagem , Aprendizagem
2.
Proc Natl Acad Sci U S A ; 120(46): e2311548120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931096

RESUMO

We address a generalization of the concept of metapopulation capacity for trees and networks acting as the template for ecological interactions. The original measure had been derived from an insightful phenomenological model and is based on the leading eigenvalue of a suitable landscape matrix. It yields a versatile predictor of metapopulation persistence through a threshold value of the eigenvalue determined by ecological features of the focal species. Here, we present an analytical solution to a fundamental microscopic model that incorporates key ingredients of metapopulation dynamics and explicitly distinguishes between individuals comprising the "settled population" and "explorers" seeking colonization. Our approach accounts for general network characteristics (in particular graph-driven directional dispersal which is known to significantly constrain many ecological estimates) and yields a generalized version of the original model, to which it reduces for particular cases. Through examples, including real landscapes used as the template, we compare the predictions from our approach with those of the standard model. Results suggest that in several cases of practical interest, differences are significant. We also examine, with both models, how changes in habitat fragmentation, including removal, addition, or alteration in size, affect metapopulation persistence. The current approach demonstrates a high level of flexibility, enabling the incorporation of diverse "microscopic" elements and their impact on the resulting biodiversity landscape pattern.


Assuntos
Ecossistema , Modelos Biológicos , Humanos , Dinâmica Populacional , Biodiversidade , Árvores
3.
iScience ; 26(3): 106181, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895645

RESUMO

Between 2019 and 2020, during the country's hottest and driest year on record, Australia experienced a dramatic bushfire season, with catastrophic ecological and environmental consequences. Several studies highlighted how such abrupt changes in fire regimes may have been in large part a consequence of climate change and other anthropogenic transformations. Here, we analyze the monthly evolution of the burned area in Australia from 2000 to 2020, obtained via satellite imaging through the MODIS platform. We find that the 2019-2020 peak is associated with signatures typically found near critical points. We introduce a modeling framework based on forest-fire models to study the properties of these emergent fire outbreaks, showing that the behavior observed during the 2019-2020 fire season matches the one of a percolation transition, where system-size outbreaks appear. Our model also highlights the existence of an absorbing phase transition that might be eventually crossed, after which the vegetation cannot recover.

4.
Phys Rev E ; 106(1-1): 014118, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974569

RESUMO

Low-dimensional representations of underdamped systems often provide useful insights and analytical tractability. Here, we build such representations via information projections, obtaining an optimal model that captures the most information on observed spatial trajectories. We show that, in paradigmatic systems, the minimization of the information loss drives the appearance of a discontinuous transition in the optimal model parameters. Our results raise serious warnings for general inference approaches, and they unravel fundamental properties of effective dynamical representations impacting several fields, from biophysics to dimensionality reduction.

5.
Phys Rev E ; 106(1-1): 014153, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974654

RESUMO

Biochemistry, ecology, and neuroscience are examples of prominent fields aiming at describing interacting systems that exhibit nontrivial couplings to complex, ever-changing environments. We have recently shown that linear interactions and a switching environment are encoded separately in the mutual information of the overall system. Here we first generalize these findings to a broad class of nonlinear interacting models. We find that a new term in the mutual information appears, quantifying the interplay between nonlinear interactions and environmental changes, and leading to either constructive or destructive information interference. Furthermore, we show that a higher mutual information emerges in out-of-equilibrium environments with respect to an equilibrium scenario. Finally, we generalize our framework to the case of continuously varying environments. We find that environmental changes can be mapped exactly into an effective spatially varying diffusion coefficient, shedding light on modeling of biophysical systems in inhomogeneous media.

6.
Sci Rep ; 12(1): 10770, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750684

RESUMO

The critical brain hypothesis has emerged as an attractive framework to understand neuronal activity, but it is still widely debated. In this work, we analyze data from a multi-electrodes array in the rat's cortex and we find that power-law neuronal avalanches satisfying the crackling-noise relation coexist with spatial correlations that display typical features of critical systems. In order to shed a light on the underlying mechanisms at the origin of these signatures of criticality, we introduce a paradigmatic framework with a common stochastic modulation and pairwise linear interactions inferred from our data. We show that in such models power-law avalanches that satisfy the crackling-noise relation emerge as a consequence of the extrinsic modulation, whereas scale-free correlations are solely determined by internal interactions. Moreover, this disentangling is fully captured by the mutual information in the system. Finally, we show that analogous power-law avalanches are found in more realistic models of neural activity as well, suggesting that extrinsic modulation might be a broad mechanism for their generation.


Assuntos
Modelos Neurológicos , Neurônios , Animais , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Ruído , Ratos
7.
Phys Rev Lett ; 127(22): 228301, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889638

RESUMO

Real-world systems are characterized by complex interactions of their internal degrees of freedom, while living in ever-changing environments whose net effect is to act as additional couplings. Here, we introduce a paradigmatic interacting model in a switching, but unobserved, environment. We show that the limiting properties of the mutual information of the system allow for a disentangling of these two sources of couplings. Further, our approach might stand as a general method to discriminate complex internal interactions from equally complex changing environments.

8.
Front Syst Neurosci ; 15: 709677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526881

RESUMO

Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...